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1 Introduction

The growing threat of climate change highlights the urgent need for policies that reduce

greenhouse gas (GHG) emissions. As of November 2024, Project (2024) estimates that

the remaining carbon budget (RCB) -the total amount of CO2 that can be emitted without

surpassing critical warming thresholds- is approximately 235 GtCO2 for a 50% probability

of limiting global warming to 1.5°C. This corresponds to roughly six years of emissions at

current rates. For a 50% chance of remaining below 2°C, the RCB is around 1,110 GtCO2,

equivalent to approximately 27 years of emissions. Absent decisive mitigation efforts, the

objective of the Paris Agreement -to limit warming to well below 2ºC by 2100- may become

increasingly unattainable.

In this context, carbon pricing has emerged as a cornerstone policy instrument for

addressing the negative externalities associated with emissions. By internalizing the social

costs of carbon into individual decision-making, carbon pricing aims to align private incentives

with broader societal objectives. However, accurately estimating the social cost of carbon

remains challenging, as it depends on assumptions regarding physical damages, economic

modeling frameworks, and the choice of discount rates (Moore et al., 2024).

The Paris Agreement, signed by 196 parties in 2016, adopts a precautionary approach,

aiming to limit global warming well below 2°C in order to mitigate the risk of catastrophic

climate outcomes. In this context, Pindyck (2022) characterizes climate change mitigation as

a form of insurance against potentially severe economic disruptions, which, under extreme

warming scenarios, could lead to GDP losses ranging from 20 to 40%. While limiting

temperature increases is critical to averting such outcomes, achieving these targets within

a narrow time horizon may involve substantial economic trade-offs, as reaching net-zero

emissions will require reversing decades of cumulative emission growth within just a couple

of decades -a formidable and costly undertaking.
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Recent analyses suggest a high elasticity between emissions and economic activity in

the European Union, implying that decarbonization efforts may inherently slow economic

growth. Känzig (2024) reports an elasticity that exceeds one, indicating that emission

reductions triggered by regulatory events are associated with even greater contractions in

output. However, this finding is difficult to reconcile with the long-run decline in both energy

intensity (energy consumption per unit of GDP) and emissions intensity (emissions per unit

of energy), which has occurred alongside sustained economic growth across Europe. This

apparent inconsistency may stem from identification challenges, particularly the conflation of

carbon policy impacts with concurrent negative demand shocks.

This paper advances the literature on the economic effects of carbon price policies by

introducing a refined methodology that improves the identification of carbon price shocks

and disentangles them from other concurrent disturbances. Specifically, it integrates Känzig

(2024)’s carbon policy surprise framework with Narrative Sign Restrictions (NSR) within a

Structural Vector Autoregression (SVAR) model. By focusing on the most representative

regulatory events, the approach mitigates biases arising from overlapping demand-side shocks

and eliminates the need for explicitly constructed shock variables, thereby streamlining the

modeling strategy. This innovation not only enhances the precision of shock identification,

but also yields results that are consistent with key economic episodes and narratives, including

the Global Financial Crisis and the COVID-19 pandemic.

The rest of this paper is organized as follows. Section 2 provides an overview of the EU

Emissions Trading System (EU ETS) and the evolution of GHG emissions in the European

Union, highlighting key developments and recent trends. Section 3 reviews recent literature

on the macroeconomic effects of carbon pricing instruments. Sections 4 to 6 outline the

foundational SVAR framework and detail the incorporation of narrative information through

sign restrictions. Section 7 applies this methodology to the EU ETS market, while Section 8

evaluates its effects on European economic activity. We simulate the potential impacts of a

3



net-zero scenario aligned with Phase IV of the Network for Greening the Financial System

(NGFS). Finally, Section 9 concludes.

2 Carbon emissions and schemes in the EU

2.1 The evolution of GHG emissions

The evolution of GHG in the European Union can be contextualized through the Kaya identity,

which decomposes total emissions into four fundamental drivers: population, GDP per capita,

energy intensity (energy consumption per unit of GDP), and carbon intensity (GHG emissions

per unit of energy). Formally, the identity is expressed as:

GHG emis. = Population ×
(

GDP
Population

)
×
(
Energy cons.

GDP

)
×
(

GHG emis.
Energy cons.

)
which simplifies to:

GHG emis. = GDP ×
(
Energy cons.

GDP

)
×
(

GHG emis.
Energy cons.

)
As illustrated in Figure 1, the evolution of EU GHG emissions since 1990 can be broadly

characterized by three distinct phases of decarbonization. From 1990 to 2005, emissions

remained relatively flat, declining at an annual average rate of just 0.3%. During this period,

GDP growth largely offset modest gains in energy efficiency and carbon intensity. Between

2005 and 2018, emissions fell more substantially, with an average annual reduction of 1.5%,

driven primarily by accelerated improvements in energy intensity and, to a lesser extent,

cleaner energy production. Since 2018, the pace of decarbonization has increased, with

emissions dropping by an average of 3.1% per year. This recent phase reflects significant strides
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in energy efficiency, partly spurred by geopolitical developments, such as the reduced reliance

on Russian natural gas, and the rapid deployment of renewable energy technologies. However,

sustained GDP growth continues to partially offset emission reductions, underscoring the

critical importance of decoupling economic activity from GHG emissions.

Figure 1: GHG emissions, EU. Kaya’s identity.

Despite recent reductions, current GHG emissions trajectories remain insuficient to

meet both the EU’s Nationally Determined Contribution (NDC) and net-zero pathways,

underscoring the need for unprecedent policy action or technological innovation. Figure 1

displays in the final column the projected emissions (2024–2030) by Tracker (2024) in an

escenario without additional policies, alongside the reductions required to meet both the NDC

targets (green dot) and net-zero goals (brown dot). Specifically, assuming a continued annual

growth rate of approximately 1%, achieving these targets would demand unprecedented

declines in carbon and energy intensity, even for the NDC scenario, as evidenced by the light

green column.

5



2.2 The EU-ETS: evolution and challenges

The European Union Emissions Trading System (EU-ETS) is the world’s most comprehensive

pricing instrument, covering approximately 40% of the EU’s GHG emissions as of 2024.

Since its inception in 2005, the EU-ETS has undergone several reforms to align with the

EU’s climate goals. The first phase (2005-2007) served as a pilot but was undermined by a

significant oversupply of free allowances. The second phase (2008-2012) introduced stricter

rules, including reduced free allocations and broader coverage, but faced challenges from

the 2008 financial crisis. The third phase (2013-2020) introduced pivotal reforms, such as

the centralized auctioning of the allowances, stricter regulations on the power sector, and a

market stability reserve to manage supply imbalances. The ongoing fourth phase (2021-2030)

accelerates efforts with a sharper emissions cap reduction, expanded sector coverage, and

measures to address carbon leakage, aligning the system more closely with the EU’s long-term

climate objectives (Commission, 2025).

It is important to note that the EU-ETS has historically prioritized regulating CO2

emissions, particularly from energy-intensive sectors. The system’s design has primarily

targeted industries such as power generation, aviation, and manufacturing (e.g. cement or

steel), which collectively account for a substantial share of EU-wide CO2 output. In contrast,

non-CO2 greenhouse gases (e.g., methane from agriculture) have remained largely excluded

from the scope of the system. Similarly, emissions from sectors like road transport and

buildings, key contributors to the EU’s carbon footprint, have thus far been excluded and are

scheduled to be only partially integrated into the EU-ETS 2 framework starting in 2027. This

selective scope underscores both the system’s effectiveness in driving decarbonization within

industrial processes and its limitations in addressing the full spectrum of EU emissions.

While the EU-ETS appears at first glance to be effective in reducing carbon emissions, see
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Figure 2, its broader macroeconomic effects remain a matter of intense debate1. Assessing the

economic consequences of a carbon price shock -whether on output, employment, inflation, or

macroeconomic stability- presents significant challenges. Historical data are confounded by

the overlapping occurrence of major economic disruptions and pivotal regulatory reforms in

the EU-ETS, making it challenging to isolate and accurately measure the individual impacts

of its multiple structural changes. For instance, the 2008 Global Financial Crisis and the

economic disruptions caused by the COVID-19 pandemic coincided with key regulatory

adjustments in the EU-ETS, thereby complicating efforts to disentangle the impact of carbon

pricing from those of contemporaneous economic shocks.

Figure 2: Graph in the left: Carbon price instruments, 2023. Graph in the right: EU CO2
emissions, 2012-2021.

1Regarding the more pronounced decline in emissions within the EU ETS compared to the overall EU
emissions, it is theoretically possible that factors beyond emissions pricing, such as variations in demand effects,
may explain this divergence.
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3 Literature review

The impact of carbon pricing, particularly the EU-ETS, on emissions and macroeconomic

variables has become a central topic in environmental economics. Foundational studies, such

as Martin et al. (2014) and Andersson (2019), provide robust evidence that carbon pricing is

effective in reducing emissions. However, its broader macroeconomic implications have only

recently begun to receive systematic attention in the literature.

Theoretical models, including McKibbin et al. (2017) and Goulder and Hafstead (2018),

generally predict contractionary effects on output. In contrast, empirical studies such as

Metcalf (2019) and Bernard and Kichian (2021) find negligible impacts of carbon taxes on

GDP, suggesting that well-designed mechanisms may avoid significant economic damage.

Metcalf and Stock (2020) and Konradt and Weder di Mauro (2021) extend this analysis

to employment and inflation, finding no major adverse effects in European and Canadian

carbon pricing systems. However, the relatively modest scope and tax rates of many carbon

pricing schemes -as well as the presence of offsetting fiscal measures- may mask the true

macroeconomic impacts.

Recent research has increasingly focused on the distributional effects of carbon pricing.

Ohlendorf et al. (2021) highlight the disproportionate burden borne by lower-income

households in the EU, while Hensel et al. (2024) link carbon price shocks to shifts in

inflation expectations. National and firm-level responses also vary, with Berthold et al. (2023)

finding greater economic disruption in carbon-intensive economies, and Känzig and Konradt

(2023) identifying institutional factors like free permit allocation and market structure as key

determinants of policy effectiveness.

A significant contribution comes from Känzig (2024), who isolates regulatory-driven

carbon price shocks within the EU-ETS, revealing persistent increases in consumer prices and

reduced economic activity. Building on his methodology, this paper refines the identification
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of carbon price shocks and provides more precise estimates of their macroeconomic effects.

While reducing the green premium entails transitional costs, the results are consistent

with the expectation of temporary economic disruptions until green technologies reach full

deployment. Intuitively, carbon pricing mechanisms aimed at decarbonization effectively

shorten the productive lifespan of capital assets originally designed for a carbon-intensive

economy. By increasing the real cost of utilizing such capital, these mechanisms accelerate

the reallocation of economic activities and alter spending and saving decisions, potentially

dampening aggregate economic performance.

4 The Model

Consider the structural vector autoregression of the general form

y′𝑡A0 =

𝑝∑︁
ℓ=1

y′𝑡−ℓAℓ + c + ε′𝑡 for 1 ≤ 𝑡 ≤ 𝑇 (1)

where y𝑡 is an 𝑛 × 1 vector of variables, ε𝑡 is an 𝑛 × 1 vector of structural shocks, Aℓ is an

𝑛 × 𝑛 matrix of parameters for 0 ≤ ℓ ≤ 𝑝 with A0 invertible, c is a 1× 𝑛 vector of parameters,

𝑝 is the lag length, and 𝑇 is the sample size. The vector ε𝑡 , conditional on past information

and the initial conditions y0, . . . , y1−𝑝, is Gaussian with mean zero and covariance matrix I𝑛,

the 𝑛 × 𝑛 identity matrix. The model described in Equation (1) can be written as

y′𝑡A0 = x′𝑡A+ + ε′𝑡 for 1 ≤ 𝑡 ≤ 𝑇, (2)

where A′
+ =

[
A′

1 · · · A′
𝑝 c′

]
and x′𝑡 =

[
y′
𝑡−1, . . . , y

′
𝑡−𝑝, 1

]
for 1 ≤ 𝑡 ≤ 𝑇 . The dimension

of A+ is 𝑚 × 𝑛 and the dimension of x𝑡 is 𝑚 × 1, where 𝑚 = 𝑛𝑝 + 1. The reduced-form
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representation implied by Equation (2) is

y′𝑡 = x′𝑡B + u′
𝑡 for 1 ≤ 𝑡 ≤ 𝑇,

where B = A+A−1
0 , u′

𝑡 = ε′𝑡A−1
0 , and E

[
u𝑡u′

𝑡

]
= 𝚺 =

(
A0A′

0

)−1
. The matrices B and 𝚺 are the

reduced-form parameters, while A0 and A+ are the structural parameters. Similarly, u′
𝑡 are

the reduced-form innovations, while ε′𝑡 are the structural shocks. The shocks are orthogonal

and have an economic interpretation, while the innovations are, in general, correlated and do

not have an interpretation. Let 𝚯 = (A0,A+) collect the value of the structural parameters.

4.1 Impulse responses

Recall the definition of impulse responses. Given a value 𝚯 of the structural parameters,

the response of the 𝑖-th variable to the 𝑗-th structural shock at horizon 𝑘 corresponds to the

element in row 𝑖 and column 𝑗 of the matrix L𝑘 (𝚯), where L𝑘 (𝚯) is defined recursively by

L0 (𝚯) =
(
A−1

0

)′
, L𝑘 (𝚯) =

𝑘∑︁
ℓ=1

(
AℓA−1

0

)′
L𝑘−ℓ (𝚯) , for 1 ≤ 𝑘 ≤ 𝑝,

L𝑘 (𝚯) =
𝑝∑︁

ℓ=1

(
AℓA−1

0

)′
L𝑘−ℓ (𝚯) , for 𝑝 < 𝑘 < ∞.

Given a value 𝚯 of the structural parameters and the data, the structural shocks at time 𝑡

are

ε′𝑡 (𝚯) = y′𝑡A0 − x′𝑡A+ for 1 ≤ 𝑡 ≤ 𝑇. (3)
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5 The Identification Problem and Sign Restrictions

As is well known, the structural form in Equation (1) is not identified, so restrictions must be

imposed on the structural parameters to solve the identification problem. The desire to impose

only minimalist identification restrictions that are agreed upon by most researchers motivated

Faust (1998); Canova and Nicolo (2002); Uhlig (2005); Rubio-Ramirez et al. (2010) to

develop methods to identify the structural parameters by placing a handful of uncontroversial

traditional sign restrictions on the impulse responses or the structural parameters themselves.

Antolı́n-Dı́az and Rubio-Ramı́rez (2018) developed a new class of sign restrictions based on

narrative information that they call Narrative Sign Restrictions. NSR constrains the structural

parameters by ensuring that around a handful of key historical events, the structural shocks,

and/or historical decompositions agree with the established narrative. In this paper, we

combine traditional and narrative sign restrictions to identify EU-ETS carbon price shocks in

the main macroeconomic variables.

5.1 Traditional sign restrictions

Traditional sign restrictions are well understood and their use is widespread in the literature.

In particular, Rubio-Ramirez et al. (2010) highlights how this class of restrictions can be

characterized by the function

Γ (𝚯) =
(
e′1,𝑛F(𝚯)′S′

1, · · · , e
′
𝑛,𝑛F(𝚯)′S′

𝑛

)′
> 0. (4)

Appropriate choices of S 𝑗 and F(𝚯) will lead to sign restrictions on the impulse responses

or the structural parameters themselves. In particular, to impose restrictions on the impulse

responses, one can define F(𝚯) as vertically stacking the impulse responses at the different

horizons over which we want to impose the restrictions and S 𝑗 as an 𝑠 𝑗 × 𝑟 𝑗 matrix of zeros,
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ones and negative ones that will select the horizons and the variables over which we want to

impose the 𝑟 𝑗 sign restrictions to identify structural shock 𝑗 . If instead we want to impose

restrictions on the structural parameters themselves, we can then define F(𝚯) = 𝚯 and S 𝑗 as

an 𝑠 𝑗 × 𝑟 𝑗 matrix of zeros, ones and negative ones that will select entries of 𝚯 over which we

want to impose the sign restrictions.

5.2 Narrative sign restrictions

Antolı́n-Dı́az and Rubio-Ramı́rez (2018) consider two types of NSR. First, restrictions on

the signs of structural shocks. Second, restrictions on the historical decomposition. The

approach of this paper relies on the first one.

5.2.1 Restrictions on the signs of the structural shocks

Let us assume that we want to impose the restriction that the signs of the 𝑗-th shock at 𝑠 𝑗

episodes occurring at dates 𝑡1, . . . , 𝑡𝑠 𝑗 are all positive. Then, the NSR can be imposed as

e′𝑗 ,𝑛ε𝑡𝑣 (𝚯) > 0 for 1 ≤ 𝑣 ≤ 𝑠 𝑗 . (5)

Assume instead that we want to impose the restriction that the signs of the 𝑗-th shock at 𝑠 𝑗

episodes occurring at dates 𝑡1, . . . , 𝑡𝑠 𝑗 are negative. Then, the NSR can be imposed with a

negative sign on the left-hand side of Equation (5). Of course, one could restrict the shocks

in a few periods to be negative and positive in a few others.
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6 Bayesian Inference

In this section, we describe how to perform Bayesian inference to handle NSR. Equations (5)

imply the following function to characterize NSR

𝜙 (𝚯, ε𝑣) > 0, (6)

where ε𝑣 =
(
ε𝑡1 , . . . , ε𝑡𝑣

)
are the structural shocks constrained by the NSR. A comparison

with Equation (4) makes it clear that the traditional sign restrictions depend on the structural

parameters, whereas the NSR depends as well on the structural shocks. Moreover, Equation

(3) implies the following invertible function

ε𝑡 = 𝑔ℎ (y𝑡 , x𝑡 ,𝚯) for 1 ≤ 𝑡 ≤ 𝑇, (7)

with y𝑡 = 𝑔−1
ℎ

(ε𝑡 ; x𝑡 ,𝚯) for 1 ≤ 𝑡 ≤ 𝑇 . Using Equations (6) and (7), we can write

𝜙 (𝚯, y𝑣, x𝑣) = 𝜙
(
𝚯, 𝑔ℎ

(
y𝑡1 , x𝑡1 ,𝚯

)
, . . . , 𝑔ℎ

(
y𝑡𝑣 , x𝑡𝑣 ,𝚯

) )
> 0, (8)

where y𝑣 =
(
y𝑡1 , . . . , y𝑡𝑣

)
and x𝑣 =

(
x𝑡1 , . . . , x𝑡𝑣

)
. Hence, given the data, Equation (6) is

continuous on the structural parameters while, given the structural parameters, Equation (6)

is continuous on the structural shocks.

6.1 The posterior distribution

We can consider an alternative parameterization of the structural VAR in (2), defined by B, 𝚺,

and Q, where Q ∈ 𝑂 (𝑛), the set of all orthogonal 𝑛×𝑛 matrices, which we call the orthogonal

reduced-form parameterization. To define a mapping between 𝚯 and (B,𝚺,Q), one must

first choose a decomposition of the covariance matrix 𝚺. Let ℎ(𝚺) be an 𝑛 × 𝑛 matrix that
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satisfies ℎ(𝚺)′ℎ(𝚺) = 𝚺, where ℎ is differentiable. One would normally choose ℎ(𝚺) to be

the Cholesky decomposition. Given a decomposition ℎ, we can define the mapping between

𝚯 and (B,𝚺,Q)

𝑓ℎ (𝚯) = (A+A−1
0︸ ︷︷ ︸

B

, (A0A′
0)

−1︸     ︷︷     ︸
𝚺

, ℎ((A0A′
0)

−1)A0︸              ︷︷              ︸
Q

),

where it is easy to see that ℎ((A0A′
0)

−1)A0 is an orthogonal matrix. The function 𝑓ℎ is

invertible, with inverse defined by

𝑓 −1
ℎ (B,𝚺,Q) = (ℎ(𝚺)−1Q︸    ︷︷    ︸

A0

,Bℎ(𝚺)−1Q︸       ︷︷       ︸
A+

). (9)

Using Equation (9), we can rewrite Equation (8) as Φ(B,𝚺,Q, y𝑣, x𝑣) =

𝜙
(
𝑓 −1
ℎ

(B,𝚺,Q), y𝑣, x𝑣
)
> 0. Thus, the posterior of (B,𝚺,Q) subject to the NSR is

𝜋

(
B,𝚺,Q|y𝑇 ,Φ(B,𝚺,Q, y𝑣, x𝑣) > 0

)
=

𝜋
(
y𝑇 |B,𝚺,Q,Φ(B,𝚺,Q, y𝑣, x𝑣) > 0

)
𝜋 (B,𝚺,Q)∫

𝜋
(
y𝑇 |B,𝚺,Q,Φ(B,𝚺,Q, y𝑣, x𝑣) > 0

)
𝜋 (B,𝚺,Q) 𝑑 (B,𝚺,Q)

,

(10)

where y𝑇 = {y1−𝑝, . . . , y0, . . . , y𝑇 } is the data, 𝜋
(
y𝑇 |B,𝚺,Q,Φ(B,𝚺,Q, y𝑣, x𝑣) > 0

)
is the

likelihood function subject to the NSR and 𝜋 (B,𝚺,Q) is the prior. Antolı́n-Dı́az and

Rubio-Ramı́rez (2018) show that the truncated likelihood function in Equation (10) can be

written as

𝜋

(
y𝑇 |B,𝚺,Q,Φ (B,𝚺,Q, y𝑣, x𝑣) > 0

)
=

[Φ(B,𝚺,Q,y𝑣 ,x𝑣)>0]𝜋(y𝑇 |B,𝚺)
𝜔(B,𝚺,Q) , (11)

where 𝜔 (B,𝚺,Q) =
∫ [

Φ̃ (B,𝚺,Q, ε𝑣) > 0
] (∏𝑣

𝑠=1 𝜋
(
ε𝑡𝑠

) )
𝑑
(
ε𝑡1 . . . ε𝑡𝑣

)
. Equation (11)

makes clear that the truncated likelihood can be written as a re-weighting of the likelihood

function, with weights inversely proportional to the probability of satisfying the restriction.
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One would normally choose priors of (B,𝚺,Q) that are uniform over 𝑂 (𝑛). When that

is the case, 𝜋 (B,𝚺,Q) = 𝜋 (B,𝚺), and the posterior of (B,𝚺,Q) subject to the NSR is

proportional to

𝜋

(
B,𝚺,Q|y𝑇 ,Φ (B,𝚺,Q, y𝑣, x𝑣) > 0

)
∝

[Φ (B,𝚺,Q, y𝑣, x𝑣) > 0] 𝜋
(
y𝑇 |B,𝚺

)
𝜔 (B,𝚺,Q) 𝜋 (B,𝚺) .

In other words, the posterior distribution is proportional to the re-weighted likelihood times

the prior. On the contrary, as mentioned above, in the case of traditional sign restrictions, it is

the prior and not the likelihood that is truncated. Using similar derivations, under priors that

are uniform over 𝑂 (𝑛) the posterior distribution subject to the traditional sign restrictions

is 𝜋
(
B,𝚺,Q|y𝑇 , Γ

(
𝑓 −1
ℎ

(B,𝚺,Q)
)
> 0

)
∝

[
Γ
(
𝑓 −1
ℎ

(B,𝚺,Q)
)
> 0

]
𝜋
(
y𝑇 |B,𝚺

)
𝜋 (B,𝚺), in

which no re-weighting of the likelihood is needed. If one uses both traditional and

NSR the posterior distribution 𝜋
(
B,𝚺,Q|y𝑇 , Γ

(
𝑓 −1
ℎ

(B,𝚺,Q)
)
> 0,Φ (B,𝚺,Q, y𝑣, x𝑣) > 0

)
is proportional to

[
Γ

(
𝑓 −1
ℎ (B,𝚺,Q)

)
> 0

] [Φ (B,𝚺,Q, y𝑣, x𝑣) > 0] 𝜋
(
y𝑇 |B,𝚺

)
𝜔 (B,𝚺,Q) 𝜋 (B,𝚺) .

6.2 The algorithm

In practice, one would normally choose priors of (B,𝚺,Q) that are uniform-normal-inverse-

Wishart. In that choice, we are now ready to specify our algorithm to independently draw

from the uniform-normal-inverse-Wishart posterior of (B,𝚺,Q) conditional on the traditional

and NSR.

Algorithm 1. This algorithm makes independent draws from the uniform-normal-inverse-

Wishart posterior of (B,𝚺,Q) conditional on the traditional and NSR.

1. Independently draw (B,𝚺) from the normal-inverse-Wishart posterior of the reduced-
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form parameters and Q from the uniform distribution over 𝑂 (𝑛).

2. Check whether
[
Γ
(
𝑓 −1
ℎ

(B,𝚺,Q)
)
> 0

]
and [Φ (B,𝚺,Q, y𝑣, x𝑣) > 0] are satisfied.

3. If not, discard the draw. Otherwise let the importance weight of (B,𝚺,Q) be as follows

3.1. Simulate M independent draws of ε𝑣 from the standard normal distribution.

3.2. Approximate 𝜔 (B,𝚺,Q) by the proportion of the M draws that satisfy

Φ̃ (B,𝚺,Q, ε𝑣) > 0 and set the importance weight to 1
𝜔(B,𝚺,Q) .

4. Return to Step 1 until the required number of draws has been obtained.

5. Draw with replacement from the set of (B,𝚺,Q) using the importance weights.

This choice of priors of (B,𝚺,Q) is good because it is extremely easy and efficient to make

independent draws from the normal-inverse-Wishart distribution and because Rubio-Ramirez

et al. (2010) describes how to use the QR decomposition to independently draw the uniform

distribution over 𝑂 (𝑛). Algorithm 1 makes clear that it does not suffice to simply discard the

draws that violate the NSR. This would imply giving higher posterior probability to draws of

(B,𝚺,Q) that are more likely to satisfy the NSR. Hence, this would amount to drawing from

a posterior distribution of (B,𝚺,Q) that it is not uniform-normal-inverse-Wishart. Instead,

we need to compute the importance weights and re-sample the draws accordingly.2 Also, for

the reasons explained in Arias et al. (2018), Algorithm 1 is making independent draws from

the posterior normal-generalized-normal distribution of 𝚯.3

2The number of draws 𝑀 in step 3 needs to be high enough to accurately approximate the importance
weights. The larger 𝑣 is, the more draws will be required. We find that one thousand draws are usually enough
to obtain an accurate approximation when narrative restrictions are used in one or two events. For exercises
involving more than five or six restrictions, as many as one million might be needed.

3See Arias et al. (2018) for a definition of normal-generalized-normal distribution.
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7 Model specification

In this section, we provide a detailed overview of the data, the model specification, the prior

distribution, and the identification restrictions employed in the analysis. Since our approach

relies on Känzig (2024)’s instrument to select the dates in which we impose the narrative

sign restrictions, we also explain the construction and explanation of this variable.

7.1 Data and baseline specification

Following Känzig (2024), our baseline specification comprises eight variables. For the

climate block, we include the energy component of the Harmonized Index of Consumer

Prices (HICP) and total greenhouse gas (GHG) emissions. To represent the state of the

economy, we incorporate the headline HICP, the industrial production index (IPI), and the

unemployment rate. As Känzig (2024), given that the economy operated at the effective

lower bound for much of the sample period, we employ the two-year interest rate as the key

monetary policy indicator. Additionally, we include a stock market index and the Brent crude

oil price (deflated by the HICP) as additional indicators. Comprehensive details on the data

sources are provided in Table 1.

Figure 3 illustrates the variables included in the analysis. The sample period spans from

January 1999, marking the introduction of the euro, through December 2019, consistent with

Känzig (2024). All variables, except for the unemployment rate and the two-year rate, are

included in log-levels multiplied by 100. The VAR is estimated on monthly data using 6 lags

and a constant, weak priors on the reduced-form parameters, and a uniform distribution over

the rotation matrices. The choice reflects an agnostic stance, avoiding strong assumptions

about the likely values of the parameters a priori.

We successfully replicate Känzig (2024)’s results in both the internal and external
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Variable Description

HICPE HICP energy (EA-19) 1999M1–2019M12.
GHG Total GHG emissions excluding LULUCF and including interna-

tional aviation (EU/Eurostat/own calculations) 1999M1–2019M12.
HICP HICP all items (EA-19) 1999M1–2019M12.
IPI Industrial production excluding construction (EA-19)

1999M1–2019M12.
CB2Y Two-year government bond yield 1999M1–2019M12.
UNE Unemployment rate (EA-19) 1999M1–2019M12.
STOXX Euro STOXX 1999M1–2019M12 (deflated by the HICP).
OILP Brent Crude price FRED 1999M1–2019M12 (deflated by the

HICP).

Table 1: Data

specifications. The external one serves as the baseline comparison, as it is the main reference

in his work. Importantly, the conclusions remain robust across both specifications.4

7.2 The narrative sign restrictions

We leverage on Känzig (2024)’s instrument to identify the relevant dates for imposing the

NSR. For this reason, we now describe the instrument.

The author constructs the instrument based on high-frequency data reflecting market

responses to policy announcements under the EU ETS.5 Specifically, the carbon policy

surprise instrument is calculated as the change in European Union Allowances (EUA) futures

prices on the regulatory event day, relative to the previous trading day’s close. Since carbon

prices were near zero at the end of the first phase of the ETS, the surprise instrument is

scaled by the previous day’s wholesale electricity price to ensure standardization in impact

4Including the instrument as the first variable in the VAR and identifying shocks using a Cholesky
decomposition yields results consistent with the internal specification. In contrast, using the identified shock
variable directly as the first variable and identifying shocks using a Cholesky decomposition replicates the
external approach, as shown in Appendix 9

5Due to the establishment of the carbon market only in 2005, this instrument is available from that year
onward. To address this limitation, missing values in the surprise series are set to zero.
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Figure 3: Data Series.

measurement.

The instrument is defined as follows:

𝐶𝑃𝑆𝑢𝑟 𝑝𝑟𝑖𝑠𝑒𝑡,𝑑 =
𝐹carbon
𝑡,𝑑

− 𝐹carbon
𝑡,𝑑−1

𝑝elec
𝑡,𝑑−1

,

where 𝐹carbon
𝑡,𝑑

denotes the EUA futures price on day 𝑑, and 𝑝elec
𝑡,𝑑−1 represents the wholesale

electricity price on the previous day. The daily surprises are then aggregated to create a
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monthly series:

𝐶𝑃𝑆𝑢𝑟 𝑝𝑟𝑖𝑠𝑒𝑡 =

𝐷∑︁
𝑑=1

𝐶𝑃𝑆𝑢𝑟 𝑝𝑟𝑖𝑠𝑒𝑡,𝑑

where 𝐷 is the number of trading days within the month. If no regulatory event occurs within

a given month, the series takes a zero value, thus capturing only the policy-driven price

adjustments.

Based on the NSR identification strategy, we isolate dates on which carbon pricing shocks

are most likely to have occurred by focusing on episodes where Känzig’s policy surprise

registers a positive (negative) change, accompanied by a contemporaneous decline (increase)

in GHG emissions. To ensure that these movements are not primarily driven by demand-side

fluctuations, any simultaneous decrease (increase) in industrial production must be smaller in

magnitude than the observed change in emissions.

The dates identified include: March 2011, February 2013, September 2013, February

2014, November 2018, February 2019, April 2019, July 2019, and August 2019. In total,

we identified nine events, eight of which occurred during Phase 3 of the EU ETS -a period

marked by a diminished role of free allocations and higher stability and credibility around

the scheme. Figure 4 provides a visualization of these selected events. In particular, it shows

the instrument (blue) and the selected events (red) for NSR identification.6

6Using these identified dates, we impose the restriction that shocks occurred at these dates and specify the
sign of the 𝑗-th shock for episodes 𝑠 𝑗 , occurring at dates 𝑡1, . . . , 𝑡𝑠 𝑗 . If the instrument increases, the shocks are
defined as positive.
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Figure 4: The Carbon Policy Surprise Series (blue) and Selected Events (red).

8 Results

We now present the empirical results, focusing on the impulse responses to a carbon price

shock. The shock is normalized to generate a 1% increase in energy inflation. As shown

below, our findings are broadly consistent with those of Känzig (2024), with one notable

distinction: the use of NSR improves the interpretability of the responses by yielding a lower,

and arguably more realistic, elasticity between IPI and GHG emissions. This estimate better

reflects the historical decoupling trends discussed in section 2. As we show in the final part

of this section, our approach allows for the construction of more plausible decarbonization

scenarios.

8.1 Impulse Response Functions

Figure 5 displays the impulse response functions for GHG emissions and economic activity

measured by IPI (dark blue) and compares them to the external instrument approach in
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Känzig (2024)7 (light blue). Both GHG emissions and IPI respond negatively to a positive

carbon price shock, with emissions exhibiting a substantially larger decline. This highlights

the critical importance of NSR in estimating an elasticity between IPI and emissions more in

line with the recent improvements in energy and carbon intensity described in section 2. This

can be seen in Figure 6. Additionally, industrial production declines contemporaneously with

emissions, before stabilizing and partially recovering towards the end of the horizon.

Figure 5: IRFs to a positive carbon price shock for GHG and IPI. Our approach (dark blue)
and Känzig (2024) (light blue).

Returning to the analysis, Figure 6 shows that the mean elasticity -from period 9 to 24- of

IPI to GHG emissions decreases from over 1.02 (with a maximum of 1.2) to approximately

0.65 (with a maximum of 0.68). This adjustment is particularly important given the ETS’s

growing influence on the energy sector in recent years, a domain where green technologies

have gained considerable traction and energy efficiency improvements have been increasingly

evident. Consequently, an elasticity of 0.65 appears more consistent with the structural

shifts observed in the emission data and is arguably more plausible than the higher estimates

reported in Känzig (2024).

7We replicate Kanzig’s results by incoporating his estimated shock as the first variable in a VAR identified
via Cholesky decomposition, which is equivalent to estimating a Proxy VAR using his policy surprise as an
external instrument (see Annex 9). This approach is also employed to simulate the net-zero scenario in section
7.2, ensuring comparability with Kanzig’s methodology.
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Figure 6: Percentage of IPI change normalized to a maximum 1% decrease in GHG
emissions. Our approach (dark blue) and Känzig (2024) (light blue).

The results indicate that carbon price shocks have a more substantial impact on economic

activity than previously estimated by earlier studies on other policy instruments applied in

different contexts, such as Metcalf and Stock (2020) and Konradt and Weder di Mauro (2021),

which generally find no significant negative effects on economic performance. However,

this impact is smaller than that reported in recent literature on the EU-ETS, such as Känzig

and Konradt (2023) and Känzig (2024), which document an elasticity close to one between

emissions and economic activity. This divergence may reflect differences in both policy

scope and identification strategies. Earlier studies primarily analyze marginal schemes with

limited coverage relative to total emissions, while more recent approaches may be subject

to confounding factors, such as overlapping macroeconomic shocks, that complicates the

empirical identification of causal effects.

Figure 7 presents the remaining impulse response functions, highlighting the dynamic

effects of a restrictive carbon policy shock. In particular, the shock leads to an immediate and

pronounced increase in energy prices, accompanied by a significant and persistent decline
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in GHG emissions. These results underscore the effectiveness of carbon pricing in curbing

emissions and contributing to climate change mitigation by raising the cost of carbon-intensive

production.

From a macroeconomic perspective, the reduction in GHG emissions comes at a cost. IPI

declines, and the unemployment rate increases. However, as previously noted, the decline in

IPI is significantly smaller than in Känzig (2024), and arguably more consistent with expected

outcomes. Consumer prices, as measured by the HICP, also rise in response to the shock.

The pass-through effect is particularly pronounced for headline inflation, while core inflation

experiences a more modest increase that proves to be short-lived.

Monetary policy appears to respond by counteracting inflationary pressures induced

by the carbon price shock, potentially amplifying the adverse effects on economic activity.

Unlike in Känzig (2024), stock prices exhibit a pronounced immediate decline but recover

more quickly. In contrast, oil prices rise sharply, reflecting the inclusion of European oil

producers and refineries within the scope of the emissions trading scheme.

Figure 7: IRFs for all the variables in the system. Mean and 68% confidence bands.
Percentage points.

In terms of magnitudes, a normalized carbon price shock results in GHG emissions

and industrial production declining by approximately 1% and 0.6%, respectively. The
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unemployment rate increases by about 15 basis points, while consumer prices increase by

slightly more than 0.15%. The two-year interest rate climbs by approximately 20 basis points,

stock prices fall by roughly 2%, and oil prices increase by around 5% -all measured at the

peak of their respective responses. These responses are both statistically and economically

significant. While price effects materialize rapidly, the impacts on IPI and GHG emissions

exhibit substantial lags, with their peaks occurring nearly two years after the initial shock.

Aside from the change in the IPI to GHG emissions elasticity, our impulse responses

align broadly with those reported by Känzig (2024) as shown in Figure 8. The introduction

of NSR slightly increases the uncertainty surrounding the magnitude of the estimated effects.

Nevertheless, the responses remain statistically significant. Figure 8 also shows a slightly

attenuated price response, consistent with the reduced impact on economic activity. This

moderation is also reflected in a marginally lower unemployment rate. Similarly, as expected,

the increase in oil prices is more contained, and the stock market correction proves less

persistent.

Figure 8: IRFs for all the variables. Mean and 68% confidence bands. Our approach (dark
blue) and Känzig (2024) (light blue). Percentage points.
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8.2 Net-Zero Transition Scenario

This section examines the potential economic effects of a net-zero transition scenario in the

Eurozone, aligned with Phase IV of the Network for Greening the Financial System (NGFS).8

Specifically, we calibrate the magnitude of the carbon price shock required to achieve the path

of GHG emission embedded in the net-zero transition scenario of the NGFS, and evaluate

the economic cost through its effect on the IPI from 2024 to 2026.

To quantify the implications of the scenario, it is important to point out that, over the

three years considered in this section, the gap in cumulative GHG emissions between the

NGFS net-zero scenario and the current policy scenario widens to seven percent.9 Figure 9

shows the GHG emissions path under both scenarios (dark blue for the current policy and

light blue for the net-zero transition scenario) with historical data until the end of 2023.

It is important to note that multiple net-zero pathways exist, and numerous potential

combinations, including scenarios with declines occurring before or after those specified by

the NGFS, are possible. For the purposes of this analysis, we adopt the NGFS’s pathway.

However, comparable conclusions would be obtained under alternative net-zero trajectories.

The simulation results are computed using both our approach and that of Känzig (2024).

As Figure 10 shows, the simulation results indicate that, under our model, the economic

adjustments required to achieve a net-zero emissions scenario are substantial. By the end of

the three years, IPI is -3.9% below the level projected under the current policy scenario (dark

blue for the current policy and light blue for the net-zero transition scenario). This result

8The NGFS is a coalition of central banks and supervisors advocating for the integration of climate-related
considerations into financial practices. It provides climate scenarios to assess the economic impacts of various
transition pathways.

9The NGFS net-zero scenario outlines a pathway to achieve global net-zero emissions by 2050, consistent
with limiting global warming to 1.5°C. This scenario necessitates ambitious policies, such as stringent carbon
pricing and accelerated deployment of green technologies. While these measures impose significant short-term
economic adjustments, they effectively mitigate long-term climate risks. By contrast, the Current Policies
scenario assumes no additional climate measures beyond those already implemented, leading to continued
emissions growth and global warming exceeding 3°C by the end of the century. Although this scenario avoids
immediate economic disruptions, it substantially heightens long-term climate and economic risks.
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Figure 9: GHG emissions. Net-zero (light blue) and Current Policies scenarios (dark blue).

is consistent with the expected proportional relationship between emissions reductions and

industrial activity, and it contrasts with the negligible macroeconomic impact reported by

Metcalf and Stock (2020).

Figure 10: IPI (index). Net-zero (light blue) and Current Policies scenarios (dark blue).

Figure 11 compares the economic cost of achieving the net-zero emissions scenario
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under our identification strategy (light blue) and that of Känzig (2024) (red) for the net-zero

emissions scenario. The results based on Känzig (2024) imply a substantially larger economic

impact, culminating in a 12.9% decline in IPI by the end of the simulation horizon. This

trajectory suggests that, if extended beyond 2026, the gap in industrial output between the

two scenarios would continue to widen at an accelerated pace.

These findings underscore the importance of incorporating narrative information into

the identification strategy, particularly to disentangle the effects of a carbon price shock

from other concurrent demand-side disturbances. The results produced by our specification

-a reduction in IPI slightly exceeding half the reduction in GHG emissions- appear more

consistent with the empirical evidence and the data presented in section 2, including the

protracted penetration of renewables in the energy mix and the improvement of energy

efficiency per unit of GDP.

In contrast, the scenario implied by the Känzig (2024)’s identification approach -where

the decline in IPI exceeds twice the reduction in emissions- would render a net-zero transition

economically implausible under current structural conditions.
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Figure 11: IPI (index). Net-zero scenario. Our approach (light blue) and Känzig (2024)
(red).

9 Conclusion

The transition to a low-carbon economy is one of the most critical economic and environmental

challenges of our time. While global efforts have often faced political and institutional

hurdles, individual countries have increasingly implemented carbon pricing mechanisms to

reduce emissions domestically. Despite the growing adoption of these policies, their broader

economic and environmental effects remain insufficiently understood. This paper contributes

to filling this gap by analyzing the EU ETS, the world’s largest carbon market.

Our findings show that stricter carbon pricing policies effectively drive higher energy

prices and sustained reductions in GHG emissions. However, these benefits come with

transitional costs, including slower economic activity and a temporary increase in inflation.

This paper advances our understanding of the macroeconomic implications of carbon

pricing by applying NSR within a SVAR framework. The NSR approach provides two key

advantages. First, it eliminates the need for an explicit shock series by focusing solely on
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identifying pivotal regulatory events, while incorporating safeguards to exclude episodes

potentially confounded by unrelated negative demand shocks. Second, it produces empirically

robust results that align more closely with theoretical predictions and observed emission

and green technology trends, particularly in quantifying the elasticity of GHG emissions

reductions relative to industrial production fluctuations.

On the one hand, our findings indicate that carbon price shocks have a more substantial

impact on economic activity than suggested by earlier studies on other policy instruments

applied in different contexts, such as Metcalf and Stock (2020) and Konradt and Weder di

Mauro (2021), which generally find no significant negative effects on economic performance.

On the other hand, our results challenge previous conclusions that decarbonization would

necessitate near-total economic collapse, often implying a counterintuitive one-to-one

elasticity between GHG emissions reduction and IPI when analyzing the impact of the

EU-ETS -see Känzig and Konradt (2023) or Känzig (2024)-.

Instead, our work suggests that GHG emissions reductions can be achieved alongside

significant, but more moderate, declines in IPI. This indicates that while the economic costs

of decarbonization are considerable, they do not lead to the total collapse of economic activity.

Nevertheless, the economic costs identified in our results remain notable, emphasizing the

need for unprecedented technological innovation to meet ambitious decarbonization targets.

Simply put, the pace of innovation will need to surpass anything observed to date.

In conclusion, the NSR methodology not only simplifies the analysis of carbon pricing

impacts but also enhances the robustness and applicability of the findings. Future research

should extend this approach to other carbon markets and explore its potential in evaluating a

wider array of climate policies.
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Annex I. Algebraic Demonstration: Proxy VAR vs Cholesky

Decomposition

1. Basic VAR Model

A VAR model can be written as:

y𝑡 = A−1
0 e𝑡 ,

where:

• y𝑡 is the vector of endogenous variables.

• A−1
0 is the contemporaneous impact matrix.

• e𝑡 is the vector of structural shocks (e𝑡 ∼ N(0, I)).

The reduced form is:

y𝑡 = A(𝐿)y𝑡−1 + u𝑡 ,

where u𝑡 = A−1
0 e𝑡 are the reduced-form residuals (u𝑡 ∼ N(0,𝚺𝑢)).

2. Cholesky Decomposition

In a Cholesky decomposition, the covariance matrix of the reduced-form residuals, 𝚺𝑢, is

decomposed as:

𝚺𝑢 = PP⊤,

where P is a lower triangular matrix representing the contemporaneous effects of structural

shocks on the variables.

Under this decomposition, we assume:
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1. The first shock is exogenous and contemporaneously affects all other variables.

2. Subsequent shocks do not contemporaneously affect the first shock.

The contemporaneous impact matrix becomes:

A−1
0 = P.

3. Proxy VAR with an Estimated External Shock

In a proxy VAR, we use an external instrument 𝑧𝑡 that satisfies the following conditions:

• E[𝑧𝑡 · 𝑒1𝑡] ≠ 0: The instrument is correlated with the structural shock of interest.

• E[𝑧𝑡 · 𝑒 𝑗 𝑡] = 0 for all 𝑗 ≠ 1: The instrument is uncorrelated with other shocks.

The instrument is used to directly identify the first structural shock (𝑒1𝑡). If we estimate

this shock as 𝑒1𝑡 , it is treated as given. This is equivalent to introducing it as the first

exogenous variable in a VAR.

The reordered system becomes:


𝑒1𝑡

y(2)
𝑡

 = A−1
0


𝑒1𝑡

e(2)𝑡

 .
Where:

• 𝑒1𝑡 is not contemporaneously affected by y(2)
𝑡 .

• This is exactly the assumption made in a Cholesky decomposition when placing the

identified shock as the first variable.
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4. Algebraic Equivalence

In both cases (Cholesky and Proxy VAR):

• The first row of A−1
0 will have zeros for all columns except the first (the most exogenous

variable).

• Subsequent variables are contemporaneously conditioned on the first.

Thus, the system is equivalent to:

y𝑡 =


𝑒1𝑡

y(2)
𝑡

 ,
where the first identified shock operates exogenously, and the other variables adjust condi-

tionally.

Thus, by placing the identified shock (𝑒1𝑡) as the first variable in a VAR, the procedure is

algebraically equivalent to applying a Cholesky decomposition with the identified shock as

the most exogenous variable. This ensures that it is not contemporaneously affected by other

variables.
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